Openstack Kolla


List of Hosts:

10.240.169.3: “MAAS, docker, openstack-kolla, kolla” all installed on here

Local Docker Registry

To install multi-node docker openstack, we need to have local registry service, Nexus3 is a GUI visible easy to use registry server.
install it via docker,
create ./nexus3/data/docker-compose.yml

=====================================
nexus:
image: sonatype/nexus3:latest
ports:
– “8081:8081”
– “5000:5000”
volumes:
– ./data:/nexus-data
=======================================

and then “docker-compose up -d” to create docker container. May need to pip install docker-compose.

Launch web browser to 10.240.169.3(docker host):8081, default account:admin/admin123, then create a new repo type hosted/docker, use port 5000 and enable docker v1.

verify on docker hosts they can login this private registry: docker login -p admin123 -u admin 10.240.169.3:5000

To pull images from internet repo to local registry

on 10.240.169.3

pip install kolla
kolla-build –base ubuntu –type source –registry 10.240.169.3:5000 –push

This will pull all available docker images from internet, and stored at local.

Prepare hosts for ceph osd

part disk label on each host:
parted /dev/sdb -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP 1 -1
parted /dev/sdc -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP 1 -1
parted /dev/sdd -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP 1 -1
parted /dev/sde -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP 1 -1
parted /dev/sdf -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP 1 -1
parted /dev/sdg -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP 1 -1
parted /dev/sdh -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP_1 1 -1
parted /dev/sdi -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP_2 1 -1
parted /dev/sdj -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP_1_J 1 -1
parted /dev/sdk -s — mklabel gpt mkpart KOLLA_CEPH_OSD_BOOTSTRAP_2_J 1 -1

each host needs to install following:

apt install python-pip -y
pip install -U docker-py

apt-get install bridge-utils debootstrap ifenslave ifenslave-2.6 lsof lvm2 ntp ntpdate openssh-server sudo tcpdump python-dev vlan -y

no need to install docker.io manually, as there’s a bootstrap cmd doing this job under kolla-ansible: kolla-ansible -i multinode bootstrap-servers

if any deployment failure, copy /usr/local/share/kolla-ansible/tools/cleanup-containers to each host and run it to clean up containers and redo deploy again.

“kolla-ansible -i multinode destroy” can remove all deployed containor on all nodes, but ceph partitions will be kept. so to erase partitioned disks, run following on each host:

umount /dev/sdb1
umount /dev/sdc1
umount /dev/sdd1
umount /dev/sde1
umount /dev/sdf1
umount /dev/sdg1
umount /dev/sdh1
umount /dev/sdi1
dd if=/dev/zero of=/dev/sdb bs=512 count=1
dd if=/dev/zero of=/dev/sdc bs=512 count=1
dd if=/dev/zero of=/dev/sdd bs=512 count=1
dd if=/dev/zero of=/dev/sde bs=512 count=1
dd if=/dev/zero of=/dev/sdf bs=512 count=1
dd if=/dev/zero of=/dev/sdg bs=512 count=1
dd if=/dev/zero of=/dev/sdh bs=512 count=1
dd if=/dev/zero of=/dev/sdi bs=512 count=1
dd if=/dev/zero of=/dev/sdj bs=512 count=1
dd if=/dev/zero of=/dev/sdk bs=512 count=1

Swift

Here’s a guide to calculate what number should be used for “swift-ring-builder create “. The first step is to determine the number of partitions that will be in the ring. We recommend that there be a minimum of 100 partitions per drive to insure even distribution across the drives. A good starting point might be to figure out the maximum number of drives the cluster will contain, and then multiply by 100, and then round up to the nearest power of two.

For example, imagine we are building a cluster that will have no more than 5,000 drives. That would mean that we would have a total number of 500,000 partitions, which is pretty close to 2^19, rounded up.

It is also a good idea to keep the number of partitions small (relatively). The more partitions there are, the more work that has to be done by the replicators and other backend jobs and the more memory the rings consume in process. The goal is to find a good balance between small rings and maximum cluster size.

The next step is to determine the number of replicas to store of the data. Currently it is recommended to use 3 (as this is the only value that has been tested). The higher the number, the more storage that is used but the less likely you are to lose data.

It is also important to determine how many zones the cluster should have. It is recommended to start with a minimum of 5 zones. You can start with fewer, but our testing has shown that having at least five zones is optimal when failures occur. We also recommend trying to configure the zones at as high a level as possible to create as much isolation as possible. Some example things to take into consideration can include physical location, power availability, and network connectivity. For example, in a small cluster you might decide to split the zones up by cabinet, with each cabinet having its own power and network connectivity. The zone concept is very abstract, so feel free to use it in whatever way best isolates your data from failure. Each zone exists in a region.

A region is also an abstract concept that may be used to distinguish between geographically separated areas as well as can be used within same datacenter. Regions and zones are referenced by a positive integer.

Run following script on any random host first to create swift templates for kolla to use.

########################################################################################

export KOLLA_INTERNAL_ADDRESS=10.240.101.10 #don’t really need for multinodes
export KOLLA_SWIFT_BASE_IMAGE=”10.240.100.4:5000/kolla/ubuntu-source-swift-base:4.0.1″

mkdir -p /etc/kolla/config/swift

# Object ring
docker run \
–rm \
-v /etc/kolla/config/swift/:/etc/kolla/config/swift/ \
$KOLLA_SWIFT_BASE_IMAGE \
swift-ring-builder \
/etc/kolla/config/swift/object.builder create 8 3 1

for i in {1..8}; do
docker run \
–rm \
-v /etc/kolla/config/swift/:/etc/kolla/config/swift/ \
$KOLLA_SWIFT_BASE_IMAGE \
swift-ring-builder \
/etc/kolla/config/swift/object.builder add r1z1-10.240.103.1${i}:6000/d0 1;
done

# Account ring
docker run \
–rm \
-v /etc/kolla/config/swift/:/etc/kolla/config/swift/ \
$KOLLA_SWIFT_BASE_IMAGE \
swift-ring-builder \
/etc/kolla/config/swift/account.builder create 8 3 1

for i in {1..8}; do
docker run \
–rm \
-v /etc/kolla/config/swift/:/etc/kolla/config/swift/ \
$KOLLA_SWIFT_BASE_IMAGE \
swift-ring-builder \
/etc/kolla/config/swift/account.builder add r1z1-10.240.103.1${i}:6001/d0 1;
done

# Container ring
docker run \
–rm \
-v /etc/kolla/config/swift/:/etc/kolla/config/swift/ \
$KOLLA_SWIFT_BASE_IMAGE \
swift-ring-builder \
/etc/kolla/config/swift/container.builder create 8 3 1

for i in {1..8}; do
docker run \
–rm \
-v /etc/kolla/config/swift/:/etc/kolla/config/swift/ \
$KOLLA_SWIFT_BASE_IMAGE \
swift-ring-builder \
/etc/kolla/config/swift/container.builder add r1z1-10.240.103.1${i}:6002/d0 1;
done

for ring in object account container; do
docker run \
–rm \
-v /etc/kolla/config/swift/:/etc/kolla/config/swift/ \
$KOLLA_SWIFT_BASE_IMAGE \
swift-ring-builder \
/etc/kolla/config/swift/${ring}.builder rebalance;
done

#######################################################

Then copy all what’s been generated by this script into kolla-deployer host’s /etc/kolla/config/swift.

Neutron

By default, kolla uses flat network and only enable vlan provider network when ironic is enabled. so you’ll see this in the ml2_config.ini

[ml2]
type_drivers = flat,vlan,vxlan
tenant_network_types = vxlan
mechanism_drivers = linuxbridge,l2population
extension_drivers = qos,port_security,dns

[ml2_type_vlan]
network_vlan_ranges =

[ml2_type_flat]
flat_networks = physnet1

[ml2_type_vxlan]
vni_ranges = 1:1000
vxlan_group = 239.1.1.1

[securitygroup]
firewall_driver = neutron.agent.linux.iptables_firewall.IptablesFirewallDriver

[linux_bridge]
physical_interface_mappings = physnet1:br_vlan

[vxlan]
l2_population = true
local_ip = 10.240.102.14

Move physnet1 from flat to network_vlan_ranges will enable vlan provider feature.

Ironic

Ironic is Bare Metal Service on openstack. It needs few parts to be installed before deployed by kolla.

  1. apt-get install qemu-ultis
  2. sudo pip install -U “diskimage-builder>=1.1.2”
  3. disk-image-create ironic-agent ubuntu -o ironic-agent (this cannot be done under lxc)
  4. copy generated ironic-agent.kernel and ironic-agent.initramfs to kolla-ansible host /etc/kolla/config/ironic

enable ovs, and then kolla-ansible deploy.

When deploying ironic, iscsid will be required and it may have error “iscsid container: mkdir /sys/kernel/config: operation not permitted”, the fix is to run “modprobe configfs” on each host.

iscsid may fail to start, remove open-iscsi on all hosts will fix this.

Magnum

pip install python-magnumclient, version 2.6.0.

source user who need to use magnum need to have role in heat

make sure have following value in magnum.conf, otherwise barbican will complain for not being able to create certs.

[certificates]
cert_manager_type = barbican
cert_manager_type = x509keypair

Current COE and their supported distro, it has to match this table, otherwise it will complain vm type not supported.

COE distro
Kubernetes Fedora Atomic
Kubernetes CoreOS
Swarm Fedora Atomic
Mesos Ubuntu

Example to create docker swarm cluster:

wget https://fedorapeople.org/groups/magnum/fedora-atomic-newton.qcow2
openstack image create \
–disk-format=qcow2 \
–container-format=bare \
–file=fedora-atomic-newton.qcow2 \
–property os_distro=’fedora-atomic’ \
fedora-atomic-newton
magnum cluster-template-create swarm-cluster-template \
–image fedora-atomic-newton \
–keypair mykey \
–external-network public \
–dns-nameserver 8.8.8.8 \
–master-flavor m1.small \
–flavor m1.small \
–coe swarm
magnum cluster-create swarm-cluster \
–cluster-template swarm-cluster-template \
–master-count 1 \
–node-count 1

Collectd Influxdb and Grafana

these combination can be a really nice tool for monitoring openstack activities.

few things need to changed from default kolla deployment config:

collectd:

FQDNLookup false
LoadPlugin network
LoadPlugin syslog
LoadPlugin cpu
LoadPlugin interface
LoadPlugin load
LoadPlugin memory
Server “10.240.101.11” “25826”

influxdb:

[[collectd]]
enabled = true
bind-address = “10.240.101.11:25826”
database = “collectd”
typesdb = “/usr/share/collectd/types.db”

Be caution, it needs [[]] for collectd on influxdb. And also this types.db won’t be created automatically! Even though you can see on influxdb some udp traffic received from collectd, but it’s not stored in types.db until you manually copy it from collectd host/folder. This is critical!!!

Then Grafana is much simpler. You just need to add influxdb as datasource, and make up graphics in the dashboard. if you want to show interface traffic in bit/s, just use derivative and if_octets.

Rally with Tempest testing benchmark

Create tempest verifier, this will automatically download from github repo.

rally verify create-verifier –type tempest –name tempest-verifier

set this tempest verifier for current deployment with modified part in options.conf

rally verify configure-verifier –extend extra_options.conf

cat options.conf

[compute]
image_ref = acc51ecc-ee27-4b3a-ae2a-f0b1c1196918
image_ref_alt = acc51ecc-ee27-4b3a-ae2a-f0b1c1196918
flavor_ref = 7a8394f1-056b-41b3-b422-b5195d5a379f
flavor_ref_alt = 7a8394f1-056b-41b3-b422-b5195d5a379f
fixed_network_name = External

then just run test, “rally verify start –pattern set=compute” for specific parts of openstack.

Mount cdrom along with disk drive

Some time we’d like to have cdrom mounted with bootable disk to install OS instead of boot from images. In such a case, we need to tell openstack volume a will be a bootable cdrom, volome b will be secondary and be kept as vdb disk. After OS installed, we can then kill whole VM and recreate it again with volume b only and assign it as bootable vda, then it will be working as regular vm.

Here’s how to create VM with cdrom

nova boot –flavor m1.small –nic net-id=e3fa6e8f-5ae9-4da6-84ba-e52d85a272bb –block-device id=e513a39b-36a1-49df-a528-0ccdb0f8515b,source=volume,dest=volume,bus=ide,device=/dev/vdb,type=cdrom,bootindex=1 –block-device source=volume,id=87ae535a-984d-4ceb-87e9-e48fa109c81a,dest=volume,device=/dev/vda,bootindex=0 –key-name fuel fuel

Create PXE boot image

Openstack doesn’t support instance PXE boot. To make it work, we need to create our own PXE bootable image.

Here’s how(only works on non-container):

https://kimizhang.wordpress.com/2013/08/26/create-pxe-boot-image-for-openstack/

1.Create a small empty disk file, create dos filesystem.
dd if=/dev/zero of=pxeboot.img bs=1M count=4
mkdosfs pxeboot.img
2.Make it bootable by syslinux
losetup /dev/loop0 pxeboot.img
mount /dev/loop0 /mnt
syslinux –install /dev/loop0
3.Install iPXE kernel and make sysliux.cfg to load it at bootup
wget http://boot.ipxe.org/ipxe.iso
mount -o loop ipxe.iso /media
cp /media/ipxe.krn /mnt
cat > /mnt/syslinux.cfg <<EOF
DEFAULT ipxe
LABEL ipxe
KERNEL ipxe.krn
EOF
umount /media/
umount /mnt

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s